M.Sc. (Organic Chemistry)

MSc-I	Course Outcome
Semester I	
Physical Chemistry	Students are expected to:- understand and explain the Maxwell's
Paper I	relations, state functions, Joule Thomson's effect, third law
	thermodynamic, standard molar entropies.
	Quantum chemistry, postulates, Schrodinger's equation and its
	solution for particle in one, three dimensional box, free particle,
	harmonic oscillator, Hermitian operators.
	Chemical Dynamics:- rate laws and kinetics of thermal chain
	reaction, decomposition reaction, polymerisation reactions,
	reactions in gas phase.
	Electrochemsitry:- Debye Huckel theory, Electrolytic
	conductance, batteries, bio-electrochemsitry, elementary
	reactions in solutions, enzyme catalysed reactions, inhibition of
	enzyme action, kinetics of solid state reactions
	Solid state chemistry:- types of defects and stoichiometry, phase
	equilibria, two component system, three component system.
Inorganic Chemistry-	Students are expected to know chemical bonding in specific

Paper-II	polyatomic molecules like SF ₆ , B ₂ H ₆ , I ₃ , CO ₂ , they should have
	an idea about weak intermolecular forces of attraction.
	Students are expected to know group multification table, group
	theoretical treatment, for molecules by use of group theoretical
	concept.
	Some environmental chemistry aspects should be known by
	students as well as some bio-inorganic concept of bio-
	molecules.
	They should know inorganic spectroscopic concept and
	coordination reaction mechanism.
Organic Chemistry	Students should understand the various type of aliphatic,
Paper- III	aromatic, nucleophilic substitution reaction.
	Understand and apply principles of Organic Chemistry for
	understanding the scientific phenomenon in reaction
	mechanisms.
	Understanding of stereochemistry applied to different types of
	organic molecules.
	Learn the familiar name reactions, reagents and their reaction
	mechanisms.
Analytical Chemistry	The student is expected to know about language of analytical
Paper-IV	chemistry, quality management system, audit, safety in
	laboratories, Accreditations, GLP.
	Calculations based on chemical principals.
	Optical methods (F.T.I.R, X-Ray), Thermal methods such as
	T.G.A, D.T.A and D. S.C. (instrumentation and applications)
	•
MSc-I Sem-II	Course Outcome
Physical Chemistry	Quantum chemistry, postulates, Schrodinger's equation and its
Paper I	solution for particle in one, three dimensional box, free particle,

	harmonia agaillator Harmitian amaratara
	harmonic oscillator, Hermitian operators.
	Chemical ThermoDynamics:- rate laws and kinetics of thermal
	chain reaction, decomposition reaction, polymerisation reactions,
	reactions in gas phase.
	 Kinetics of reactions catalyzed by enzymes, their inhibition
	action and reaction in solid state.
	• Solid state chemistry:- types of defects and stoichiometry, phase
	equilibria, two component system, three component system.
Inorganic Chemistry-	Students are expected to know group multification table , group
Paper-II	theoretical treatment, for molecules by use of group theoretical
	concept.
	• Understanding of Organometallic chemistry of transition metals
	Some environmental chemistry aspects should be known by
	students as well as some bio-inorganic concept of bio-
	molecules.
	They should know inorganic spectroscopic concept and
	coordination reaction mechanism.
Organic Chemistry	Students should understand the various type of aliphatic,
Paper- III	aromatic, nucleophilic substitution reaction with carbonyl
	compounds.
	Understand and apply principles of Organic Chemistry for
	understanding the scientific phenomenon in reaction
	mechanisms.
	Understanding of molecular orbital theory for organic
	compounds.
	Determine molecular structure by using UV, IR, NMR and Mass
	spectroscopy.
Analytical Chemistry	Automation in chemical analysis.
Paper-IV	• Separation methods (G.C, H.P.L.C)
	Mass Spectrometry also the radio analytical methods and

	surface analytical techniques.
	• They should know new sources for atomic spectroscopy.
	Electroanalytical methods such as electrogravimetry,
	couolometry etc.
MSc-II	Course Outcome
Semester III	
Theoretical Organic	Students are able to understand the structure effects and
Chemistry- Paper-I	reactivity by determination of reaction mechanism involving
	different intermediates for synthesis.
	Understanding of different types of pericyclic reaction and their
	mechanism under thermal and photochemical condition.
	• Stereochemistry of different molecules of medium ring size and
	their reactivity towards different reagents.
	• Photochemical reactions of different functional groups and their
	application.
Synthetic Organic	• Understanding of various name reactions, their mechanism &
Chemistry-	applications.
Paper-II	• Understanding the concept of radical mechanism and its use in
	the organic synthesis.
	• Study of various reaction intermediates, ylides, enamines and
	their reactions along with applications.
	• Concept of metals and non-metals use in organic synthesis.
Natural Product and	Student should be able to understand the classification,
Spectroscopy -	properties, structure elucidation and few synthesis of
Paper III	carbohydrates, natural pigments and insect pheromones.
	• Understand the multi-step synthesis of natural products and
	study of prostaglandins, lipids and insect growth regulators.
	Detail study of 1D-Proton NMR spectroscopy. Understand the

	factors affecting chemical shift, spin notations of various spin	
	systems.	
	Interpret NMR spectra on basic values of PMR & C-13 NMR	
	Delta values & IR -frequencies.	
	Discuss the problem of UV, IR and NMR & Mass.	
	Discuss the 2D-NMR spectroscopy with different techniques:	
	COSY, HETCOR, DEPT, NOESY. Discuss the problems of the	3
	same technique.	
Medicinal Chemistry,	Student are able to understand the concept of drug discovery,	
Biogenesis, Green	design and development and synthesis.	
chemistry	Understanding basic concept of medicinal chemistry related to	
Paper-IV	drug action.	
	Knowledge of the connection between the structural features of	•
	the drugs & their physicochemical characteristics, mechanism of	of
	action & uses.	
	Understanding of biogenesis and biosynthesis of natural	
	products.	
	Concepts of Green chemistry and technologies like microwave	
	synthesis, ultrasound assisted reaction.	
MSc-II	Course Outcome	
Semester IV		
Theoretical Organic	Understanding the concept of racemisation and resolution	
Chemistry- Paper-I	method. Determination of enantiomers and diastereomers by	
	chromatographic, chiral derivatisation agent and lanthanide shif	ìt
	reagents.	
	Concepts of supramolecular chemistry and their application with	h
	synthesis.	
	Understanding of the concept of asymmetric synthesis with use	
	of chiral auxillary in different types of reactions like aldol,	
	sharpless epoxidation, aminohydroxylation, Diels-Alder	

	reaction.
Synthetic Organic	Designing organic synthesis using protecting groups.
Chemistry-	Introduction of retro synthetic analysis.
Paper-II	Students are able to understand the electro-organic chemistry and
	selected methods of organic synthesis.
	Application of transition and rate earth metals in organic
	synthesis.
Natural Product,	Concepts of classification, structure, occurrence, biological role
Heterocyclic	and synthesis of natural products like steroids, vitamins,
chemistry	antibiotics and terpenoids.
Paper III	Classification of heterocyclic compounds of monocyclic and
	fused heterocycles with their structure, reactivity, synthesis and
	reactions.
Research	Understanding basic concepts of research & its methodologies.
Methodology-	Identify appropriate research topics.
Paper-IV	Select & define appropriate research problem and parameters.
	Prepare a project proposal, organise and conduct research.
	Write a research proposal, report and thesis.
	Understanding of Data analysis, Chemical safety and Ethical
	handling of chemicals.